
FFAALLLLOOUUTT 22 EEDDIITTOORR IINNTTRROODDUUCCTTIIOONN

Here is the Fallout 2 editor, the scripts, and the script compiler. We were able to take some time and
put together some documentation for it (and an installer), but a lot of it will require some trial and
error. If you want to hammer away at it, well, here it is.

Some things to keep in mind:

This editor is not the holy grail. It was never meant to be released to the public. As a result, you may
boot the editor up and realize that it doesn't match your expectations for a commercially-released RPG
editor. You may suffer some retina burn. Perhaps a strange itching sensation. Constipation. So be
prepared - you are about to experience a game editor, intended only for developers.

You use the Fallout 2 editors at your own risk. A poll was posted some time ago
(http://feedback.blackisle.com/forums/showthread.php?s=&threadid=51095) asking if fans interested
in the editors would prefer to have the editors sooner with no documentation, and the answer was an
overwhelming yes, so here it is. We ended up including some documentation, anyway, so hopefully
that should help the pains of easing into the editor.

You need to have Fallout 2 installed for these editors to work.

Be sure to check out the readme.txt in the Scripts folder that will be installed with the editor. It
explains compiling the scripts, and some examples of how to build them using different C compilers
for the preprocessor. There is also information on the Open Watcom compiler and a link for where to
get it.

Page 1

http://feedback.blackisle.com/forums/showthread.php?s=&threadid=51095

This is not the Fallout 2 source code. There are no plans to release the Fallout 2 source code at this
time.

Be warned - various issues with the editor are listed in the "Known Problems" section of this
document. Check it out before using the editors.

The Fallout 2 editors are not supported by Interplay. If you have a problem with them, do not contact
customer support because they'll have no idea what you're talking about.

If you have any questions about usage of the editors, post them up on the Fallout 1 and 2 forum
(www.interplay.com), and if we can answer them, we will. Keep in mind it has been many years since
these editors have been used, and a lot of the know-how is either rusty or has been forgotten, but we'll
see what we can do.

There are a number of people you should thank for the editors.

Josh Sawyer. Without Josh, you would not have the F2 editor. He brought up the idea in a meeting,
and everybody nodded their head because it seemed like a good idea before we realized what a pain in
the ass it would be.

Darren Monahan and Feargus Urquhart. Without Darren and Ferg, you would not have the F2 editor.

Chris Heidari. Chris Heidari took a good chunk of his time to test the editor and, as an added bonus, set
up the installer to make it easier for you to use.

Scotty Everts, who put the lion's share of work in setting up the editor doc summary.

...and most of all, Chris Jones. Chris worked on getting the F2 editors together during his free time.
Without Chris, you would not have the F2 editor.

Thanks and enjoy,

Chris Avellone

Page 2

http://www.interplay.com/

FFAALLLLOOUUTT EEDDIITTOORR MMAAPP BBUUIILLDDIINNGG NNOOTTEESS

Introduction

The Fallout editor was originally written over six years ago. While it was updated and enhanced during
Fallout 1 & 2 development, it's archaic by today’s standards, and it will take a lot of patience to make
maps. (Your first few will be a challenge, but it'll get a little easier with practice.) The main problem
with map-building will be finding all the art pieces you want.

There are 6 different art categories; unfortunately, there are no sub-categories for each - the engine
didn’t support it; as new art was made, it just got added to the end of the list. So you might find a set of
wall sections with pieces spread all over the art list. Fortunately there is a Bookmark command which
will make it a little easier (explained below).

Also, this version includes art for Fallout 2 and reused art from Fallout 1. Any of the custom art from
Fallout 1 is not included as it was originally deleted to save disc space. For those enterprising
individuals that have extracted the original Fallout 1 art, you might be able to re-insert it with some
work.

Initial Concepts

There are 6 basic art objects (categories) that make up a map.

• Tiles - These are the floor and roof tiles; the basic pieces you build all your maps on. Tiles get
put down as floors when “Roof” is off. “Roof” on will place tiles at the roof elevation. So any
tile can be used either way.

• Walls - Building wall sections. They come in N/S & E/W directions. All external & internal

buildings are built from these.

• Scenery - The detail pieces such as chairs, tables, trash, cars, etc, used to decorate and flesh out
an area. Doors are in the scenery list.

• Items - Inventory items for guns, stimpaks, etc. For placing on critters, containers, or ground.

Containers are also listed under items.

• Critters - Your people and monsters. Place them and attach scripts to make them interact in
your environment.

• Misc - All the odd stuff like projectile graphics and such. Exit Grid sections are part of the

Misc list.

Place an object by Right-Clicking on art object bar (see screenshot below for reference in the following
directions). Then Left-Click where you want it on the map.

To select a placed object, Left-Click on it. There is no highlight but the selected object’s name will
appear in the Lower right info screen. Sometimes you might have to click it a few times to get it to

Page 3

select. You can also move the object around. Hold down the left mouse button while selecting and you
can drag to a new location.

Menu Bar - The menu bar is hidden until you move the cursor to the top of the screen.

Bookmarks - You can set a bookmark in each art object category. The 1-9 keys can be assigned to any
location on the art list, and each category can have its own set. To do this, move to a location on the art
object bar. Select the Menu “Tools/Set Bookmark.” Then just press the number key you want that
location to be assigned to.

Each map can have 3 map levels. Use the Up/Down arrows on the lower left side of the edit screen to
switch levels. This is used for similar levels like dungeons so you don’t have to wait for a new map to
load when switching levels.

The “H” key will toggle hexes on and off. A Hex filled in red is blocked and no PC or NPC can enter
it. Most walls and scenery are set to Blocking on. Sometimes when laying out walls or scenery, there
will be holes, which can result in embarrassing firefights in towns with enemies shooting you through
these holes in the walls without you realizing it. Blocking hexes are explained in more detail below.

The “F8” key will switch the editor into “Game” mode. You can walk your character around the map
and check holes in walls, or how scroll blocking is working, etc. This is the best key in the universe.

The “F12” key will take a screenshot. You do not have to be in game mode - you can take screenshots
at any time while you are in the editor, compiling information on weapons, ammo, critter stats, and so
on.

Page 4

Basic Editor Functions

11. Hidden
Menu Bar

1. Art
Categories

10. Cursor
2. Hex Number

3. Art Object
Number

4. Art
Object Bar

5. Map
Level

6. Art Object
Toggles

7. Critter Object
Rotation

8. Object
Functions

9. Info
Screen

1. Art Categories - You can use F1-F6 to jump between them instead of using the menu.

2. Hex Number - The number of the map hex you are placing an art object. This is helpful for
telling a scripter which of the 34+ hookers on a map you need a special script attached to, as
well as laying boundaries for certain scripts.

3. Art Object Number - The number of the art object in position one of the Art Object Bar.

4. Art Object Bar - Shows the art objects of the selected category. Double Arrows scroll by page,

single arrow one at a time. Right-Click to select one. Left-Click to place on map. “Plus” and
“Minus” keys scroll through the list. “Shift” scrolls by page.

5. Map Level - You can have up to three maps in one file. Helps save on load times for dungeons

or building interiors.

6. Art Object Toggles - Toggles the different categories of art objects on and off. Roofs are
default to "off." To lay roof tiles you need toggle on. Remember to Toggle roof tiles off to lay

Page 5

ground tiles again. “R” key is a quick key for doing this. “Top Down” button is non-functional
- it was a feature that was never implemented.

7. Critter Object Rotation - To select which way a critter is facing when placed. If your super

mutants are always getting placed down with their asses facing you, check the critter object
rotation and change it until they're facing the right direction.

8. Object Functions -

♦

♦

♦

♦

“Copy” will copy selected elements of the art object group you are currently in. If you are
in the Tiles category, only tiles will be copied, etc. Drag the box to select the copied
elements. You can stamp the selected group anywhere you like. Right click to clear.

“Copy All” functions like Copy but will copy everything selected including tiles, critters,
scenery, etc. Great fun at parties.

“Edit” is for changing attributes of the selected object.

“Delete” will permanently remove the selected object.

9. Info Screen- Lists art object names and other status info.

10. Cursor - Changes based on mode or function.

11. Hidden Menu Bar - Appears when cursor is moved to top of screen.

Menu Bar

File-

Standard Load, Save, Quit menu. You know the deal.

Tools-

• “Create Pattern” / “Use Pattern” - Allows you to set Tile patterns and place them. Making
new patterns doesn’t seem to work. “Use Pattern” has a list of various pre-made patterns to
make it easier to layout ground and floors. Select one off the list. You can now stamp that
pattern down. The “Plus” & “Minus” keys change the size of the stamp. Right-Click to exit
Pattern mode.

• “Move Map” - Allows you to shift the map. In case you run out of space on an edge, this

allows you to move the whole map around to re-center it. The arrow keys should shift it but
there was some trouble getting this function to work.

• “Move Map Elevation” - Moves the whole map to another map level.

• “Copy Map Elevation” - Copies the whole map to another map level. If you are building two

similar levels, this will save time from having to recreate most of the previous level.

Page 6

Note: There seems to be a problem when using the “Copy Map Elevation”
function. Trying to copy a level to another map/elevation level, the editor will crash to
the desktop with a generic “Program error” message. Hell, it may work for you, but it
wasn't working for us.

• “Toggle Block Object View” - There are various invisible blocker objects used to block or

restrict movement and screen scrolling. This menu option toggles them visible in the editor so
you can edit and move them - they are never visible in-game, otherwise you would have one
surreal Fallout game on your hands. Many times when placing art, there will be holes in walls
or scenery. These blockers are used to fill in those holes so the PC or NPC’s don’t walk (or
shoot) through areas of the map that they aren’t supposed to. Check out some of the Fallout 2
maps for examples of where they are used, and you'll see what we mean.

♦

♦

♦

♦

♦

♦

Wall Blocker - Dark Green “W.” Blocks movement. Shows up as Wall (Light Green) on
in-game Map. Comes in two versions, but it appears only the one labeled “Wall S.T.” is
used. (Walls category, tile#621)

Secret Blocking Hex - Light Green “S.” Blocks movement. Shows up as Scenery (Dark
Green) on in-game Map. (Scenery category, tile#66)

Block Hex Auto Inviso - Yellow “SAI.” Blocks movement. Invisible on in-game Map.
Used to block out areas of a map that you don’t want to show up on the in-game map.
(Scenery category, tile#343)

Light Source - Green “Yellow Sun symbol.” Does not block movement. Places light
source in hex. Light can be adjusted by using “Edit.” (Scenery category, tile#140)

Exit Grid Map Marker - Blue “EG.” Special markers that display in Tan on the in-game
map. Used to indicate where Exit Grids are. (Scenery category, tile#48)

Scroll Blocker - White “S.” A special marker that restricts screen scrolling. When the
center of the screen hits a row or column of these, the screen will no longer scroll any
farther. Used to define the edge of a map. Please note the scroll blocking works both ways.
If your character somehow gets outside the edge, you will not be able to scroll inside the
map area. (Misc. category, tile#11)

Many of these blockers were designed to work with the in-game map. The in-game map shows
objects in the Wall category in bright green. Scenery objects in dark green. To keep the in-
game map useful the different shades were used to make buildings stand out from the scenery.
So when placing blocking hexes, use wall blockers for filling in holes in walls, and scenery
blockers to fill in holes in scenery. The inviso blockers work well for blocking large areas like
lakes, rad goo, etc. that you don’t want to show up on the in-game map.

• Exit Grid Options - Exit Grids are the brown and green dithered areas that are used to warp

the player to a new map. The art for the dithered pattern is in the Misc. category. Green is used
for transitions between maps or map levels, and brown is used for transitions to the World Map.
(There is also a black grid, but it's unused in the game.) You will notice that when placing grid
pieces, there is a hotpoint for each that shows up light blue when Hexes are visible. That blue
hex is important - for exit grids to work, the player must move across that hex. So when laying

Page 7

down a series of Exit Grids, make sure the grid hotpoint is facing towards where the player is
entering from. And make sure an uninterrupted line of them is placed so a character always has
to cross one to reach the Exit Grid.

♦

♦

♦

Set Exit Grid Data - Sets the Exit grid data. After setting the data, you will mark the Exit
Grid objects with the other two options. Entering -1 in “Exit Grid Dest Map” option will
send the player to the World Map.

Mark Exit Grids - This will put you into a mode where you can mark exit grids to what
you entered in the above command. Clicking each Exit Grid piece will mark it. Press
“ESC” to exit this mode. Please note there is no indication you are in this mode. Other
functions may not work until you exit this mode.

Mark All Exit Grids - This will mark ALL exit grids on the map to what was set in “Set
Exit Grid Data”. It will override whatever you previously set.

• Clear Map Level - Erases all objects from the map.

The remaining options are script related and are not covered in this document.

Known Problems with the Editor

The following problems exist with the editor:

• Mapper will crash if the user tries to show map script after having canceled out of setting a map
script. To repeat, go to Scripts -> Set Map Script. Press ESC twice to cancel out of menu. Now
try to show the map script by going to Scripts -> Show Map Script. At this point the mapper
will crash to the desktop.

• You may encounter sporadic problems while going through and loading up all the maps - after

awhile, maps may load in being completely engulfed in blackness. Moving the screen or cursor
around would eventually make the blackness go away.

• Occasionally if you Alt-Tab out of the editor, the taskbar entry for the editor will disappear

even though the Alt-Tab list still shows the program as running. As a warning, Alt-Tab seems
to screw with the editor a bit.

• There is a problem when using the “Copy Map Elevation” function. Trying to copy a level to

another map/elevation level, the editor will crash to the desktop with a generic “Program error”
message.

Page 8

Script Commands for the Editor

The following was a list of potential script commands that may prove useful for programmers and
scripters out there in the fan community who are trying to decipher what does what. I do not know
what the gray-shaded definition blocks mean, but it could be significant as you're tearing through the
guts of these commands. Maybe gray-shaded means these commands are diseased. Or don't work. Or
got cut. Explore and find out, or wait for Red! and some crazy Team X Russians to figure it out.

Page 9

action_being_used
int Script

Returns the current skill () being used on a script object.

add_obj_to_inven
void Inven
 who (ObjectPtr)
 item (ObjectPtr)

Adds an object (item) to another object’s (who’s) inventory. Note that
this only works with objects of type Item.

add_mult_objs_to_inv
en
void Inven
 who (ObjectPtr)
 item (ObjectPtr)
 count (int)

Adds (count) instances of an object (item) to another object’s (who’s)
inventory. Note that this only works with objects of type Item.

add_timer_event
void Meta(Time)
 obj (ObjectPtr)
 time (int)
 info (int)

Adds a timed event call to the queue, at a given time offset, to call an
object’s (obj) script. Info is used to let scripts differentiate between
timed event calls so that they can be hooked in multiple times. Info is
read back by the script using the fixed_param operator. Note that time is
in ticks (you can use game_ticks(seconds_num) to get the time in ticks
from time in seconds).

anim
void Anim
 who (ObjectPtr)
 anim (int)
 direction (int)

Sets up a single-frame animation (anim) for the object (who) that runs in
the given direction.

anim_action_frame
int Anim
 who (ObjectPtr)
 frame (int)

Returns the action frame of the given art frame on a given object (who).
This can be used as the delay in an animation registration sequence.

anim_busy
int (boolean) Anim
 who (ObjectPtr)

Returns True if object (who) is currently animating, otherwise False.
This can be used to determine if a given object has completed an
animation.

animate_move_obj_to
_tile
void Anim
 who (ObjectPtr)
 tile (int)
 speed (int)

Sets up an animation for a critter (who) to walk to a given tile (hex) at a
given speed (speed). Speed (walk/run) can also have a flag attached (see
define.h) to force the object (who) to stop it’s current animation (for
instance, if it was already walking somewhere) and then walk/run to the
new location (tile).

animate_rotation
void Anim
 direction (0-5)

Changes the orientation (facing) of the self-object to the given direction.

animate_run_to_tile
void Anim
 tile (int)

Sets up an animation for the self-object to RUN to a given tile (hex).

animate_set_frame
void Anim
 newFrame (int)

Changes the current animation frame of the self-object to the given
frame # (newFrame). This can be used to make lights go to broken
lights or to alarm/siren lights, for example. Should be used in place of
animate_stand for 2-frame anims.

animate_stand
void Anim

Sets up an animation for the currently focused object (self) to run it’s
stand animation.
This can be used to open doors, open container items (Refridgerator, for
example) or to run a critter’s fidget animation.

animate_stand_obj
void Anim
 obj (ObjectPtr)

Sets up an animation for an object (obj) to run it’s stand animation.
This can be used to open doors, open container items (Refridgerator, for
example) or to run a critter’s fidget animation.

animate_stand_revers
e
void Anim

Sets up an animation for the currently focused object (self) to run it’s
stand animation in reverse. This is used only for non-critters, to cause
them to close (close doors, open containers, etc.)

animate_stand_revers
e_obj
void Anim
 obj (ObjectPtr)

Sets up an animation for an object (obj) to run it’s stand animation in
reverse. This is used only for non-critters, to cause them to close (close
doors, open containers, etc.)

art_anim
void Anim
 fid (int)

Returns the animation that this fid represents (ANIM_stand,
ANIM_pickup, etc.).

attack
void Combat
 who (ObjectPtr)

Causes the focused object (self) to attempt to attack an object (who).
Note that this is a macro to attack_complex() below.

attack_complex
void Combat
 who (ObjectPtr)
 called_shot (int)
 num_attacks (int)
 bonus (int)
 min_damage (int)
 max_damage (int)
 attacker_results (int)
 target_results (int)

Causes the current object (self – must be a critter) to attempt to attack a
critter (who) with various parameters modifying the combat:
 called_shot – 0/1/specific means none/random/specific (head, torso,
etc.)
 num_attacks – the # of extra attacks the self object gets before the
target
 bonus – the bonus to hit the target on the first turn only
 min_damage – the minimum damage that will be done the first attack
 max_damage – the maximum damage that will be done the first attack
 attacker_results – what state the attacker ends in after the first attack
 target_results – what state the target ends in after the first attack

attack_setup
void Combat
 who (ObjectPtr)
 victim (ObjectPtr)

Sets up an attack from who on victim, without expecting this script to
be involved. Can be used to setup attacks on critters from the map
script.

car_current_town
int Map

Returns the current town area the car can be found at. Area #’s can be
found in scripts\headers\maps.h

car_give_to_party
int Map

Gives the car to the party, and takes them to the worldmap.

car_give_gas
int Map
 amount (int)

Gives the car a given amount (amount) of gas.

combat_difficulty
int

Returns the current Combat difficulty level of the game (defined in the
options screen).

combat_is_initialized
int

Returns True if the system is currently in combat mode, False otherwise.

Page 10

create_object
int (?) Object
 pid (int)
 tile_num (int)
 elev (0-2)

Creates a new object of prototype (pid), placing it at a given tile # and at
a given elevation. If the prototype indicates a script should be attached,
then it will be.

create_object_sid
int (?) Object
 pid (int)
 tile_num (int)
 elev (0-2)
 sid (int)

Creates a new object of prototype (pid), placing it at a given tile # and at
a given elevation. If sid is not -1, then it indicates that the default script
should be overriden by this new script #.

critter_add_trait
int Critter
 who (ObjectPtr)
 trait_type (int)
 trait (int)
 amount (int)

Adds a particular trait (trait) of a given type (trait_type) to a particular
critter (who). Possible traits under the SPECIAL system are limited to:
 Perks
 Traits
 Object-instance information (such as team #’s, ai-packet #’s, etc.)

critter_attempt_place
ment
int Map
 who (ObjectPtr)
 hex (int)
 elev (0-2)

Attempts to place a critter at a given destination hex & elevation, if it
fails, then it tries to find a nearby hex that is that is as near as possible to
the start hex. No LONGER checks to see if the hex is visible on-screen.

critter_damage
void Critter
 who (ObjectPtr)
 dmg_amount (int)

Inflicts damage on a critter (who) of a given amount, killing it if
necessary.

critter_heal
void Critter
 who (ObjectPtr)
 amount (int)

Heals a critter for a given amount up to maximum.

critter_injure
int Critter
 who (ObjectPtr)
 how (int)

Injures a given critter (who) by crippling given limbs/body parts
(defined by DAM_CRIP_ARM_LEFT, DAM_BLIND, etc. in define.h)

critter_inven_obj
(ObjectPtr)
Critter/Inven
 who (ObjectPtr)
 where (int)

Returns a pointer to an object that is in a given spot (NULL if none).
The appropriate values for where are: INVEN_TYPE_WORN,
INVEN_TYPE_RIGHT_HAND, and INVEN_TYPE_LEFT_HAND.

critter_is_fleeing
int Critter
 who (ObjectPtr)

Returns True if the critter object (who) has its FLEE flag set.

critter_mod_skill
int Critter
 who (ObjectPtr)
 skill (int)
 amount (int)

Modifies a given skill in a given critter object (who) by a given amount.
Note: this currently is only valid on the player (obj_dude) object.

Page 11

critter_rm_trait
int Critter
 who (ObjectPtr)
 trait_type (int)
 trait (int)
 amount (int)

Removes a particular trait (trait) of a given type (trait_type) from a
particular critter (who). (See critter_add_trait.)

critter_set_flee_state
int Critter
 who (ObjectPtr)
 flee_on (Boolean)

Sets the FLEE flag on or off. This controls whether the critter flees
during combat.

critter_skill_level
int Critter
 who (ObjectPtr)
 skillNum (int)

Returns the current skill level of a particular object’s (who) skill
(skillNum).

critter_state
int Critter
 who (ObjectPtr)

Returns the state of a given critter object (from combat data), used to
determine if a critter is dead, unconscious, etc..

critter_stop_attacking
int Critter
 who (ObjectPtr)

Flags the critter object (who) as no longer wishing to be active in
combat.

cur_map_index
int Map

Returns the index # of the current map, to be matched with the define-
constant in define.h.

cur_town
int Map

Returns the index # of the current town, to be matched with the define-
constant in define.h.

days_since_visited
int Map

Returns the number of days since this map was last visited, or (-1) if it
has never been visited before.

debug_msg
void Debug
 text (string)

Prints a string to the debug monitor. Should be used exclusively for
debug information, instead of display_msg()!

destroy_object
int Object
 obj (ObjectPtr)

Destroys an object (obj), which will cause it’s script to be called in the
destroy_proc section if the object is *NOT* the calling object.

destroy_mult_objs
int Object
 item (ObjectPtr)
 count (int)

Destroys count number of instances of an item object. This function will
figure out which inventory this item is in (if it isn’t on the ground). If it
is on the ground, of course, there is only one instance of this object, so
only one will be destroyed.

dialogue_reaction
void Dialog
 mood (int)

Set up a reaction animation in the dialogue system.

dialogue_system_ente
r
void Dialog

Tells the dialog system that this object is requesting the talk system.
This is used when the script wants to start dialog instead of waiting for
the player to initiate it. The script will be called back in its talk_proc
section.

difficulty_level
int

Returns the current Game difficulty level of the game (defined in the
options screen).

display_msg
void
 message (string)

Displays a string on the in-game PDA display (lower-left hand corner).

Page 12

do_check
int (roll_result) Skill
 who (ObjectPtr)
 check (int)
 modifier (int)

Do a check/test-roll versus one of the various basic traits (strength,
perception, etc.).

drop_obj
void Inven
 obj (ObjectPtr)

Causes the critter self-object to remove a given object (obj) from it’s
inventory and place it on the ground at its hex. This animates the
self_obj.

drug_influence
int Critter
 who (ObjectPtr)

Returns True if a given critter object (who) is currently under any drug
influences, False otherwise.

dude_obj
(ObjectOtr)

Returns a pointer to the dude object (the player).

elevation
int Map
 obj (ObjectPtr)

Returns the current elevation being displayed.

end_dialogue
void Dialog

Terminates the dialogue system.

endgame_movie
void Meta

Plays the endgame movie.

endgame_slideshow
void Meta

Plays the endgame slideshow. The slideshow will fade in to its palette,
so it is proper to call gfade_out(1) and then expect this command to fix
the palette for you.

explosion
int Anim
 where (int)
 elevation (0-2)
 damage (int)

Sets up an explosion at a given tile number (where) on a given
elevation, that will cause damage in a radius.

fixed_param
int

Returns the value of the scripts fixed parameter. This is used with
add_timer_event, for instance, to pass the info parameter back to the
script.

float_msg
void
 who (ObjectPtr)
 msg (str)
 type (int)

Attempts to create a floating-text message (str) attached to an object
(who) using colors dictated by type. There are two special types,
WARNING and SEQUENTIAL. WARNING is used to print a message
centered on the screen (such as for end-of-quest notifications), and
SEQUENTIAL will cycle through the colors, in an attempt to give
critters different-colored messages to differentiate them.

game_ticks
int Time
 seconds (int)

Returns the number of game ticks equal to a given # of seconds.

game_time
int Time

Returns the current game time in ticks.

game_time_advance
void Time
 amount (int)

Advances the current game time by (amount) ticks.

game_time_hour
int Time

Returns the current hour of the day in a normal format, but without the
colon. For example, the current starting game time is 721 (which is 7:21
am).

Page 13

game_ui_disable
void Meta

Disables game user-interface input from the player (to ‘lock-out’ the
player). You *MUST* make sure to re-enable the UI at some point
afterwords.

game_ui_enable
void Meta

Re-enables game user-interface input from the player. This *MUST* be
called relatively soon after disabling the UI or the player will be stuck,
unable to do anything.

game_ui_is_disabled
int Meta

Returns True if the game UI is currently disabled (the player is currently
‘locked-out’), and False otherwise.

gdialog_barter
int Dialog

Tells the dialog system to switch to the barter screen. (Sets the barter
modifier to 0).

get_critter_stat
int Critter
 who (ObjectPtr)
 stat (int)

Returns the value of a desired attribute/stat in a critter object (who).

get_day
int Time

Returns the current day of the month.

gdialog_mod_barter
int Dialog
 modifier (+/- percent)

Tells the dialog system to switch to the barter screen, using a given
modifier.

get_month
int Time

Returns the current month of the year.

get_pc_stat
int Critter
 pcStat (int)

Returns the value of a desired pc-only stat of the obj_dude. These are
found in define.h all starting with “PCSTAT_”.

get_poison
 Critter
 who (ObjectPtr)

Returns the value of a given critters’ (who) poison level.

gdialog_set_barter_m
od
void Dialog
 mod (int)

Sets the current modifier for barter to a given percentage (mod). Used to
make barter easier/harder, even if the player initiates barter (as opposed
to the script starting it.)

gfade_in
void Meta
 time (int)

Does a palette fade to black. The Time parameter is currently not
actually used.

gfade_out
void Meta
 time (int)

Does a palette fade from black to the game palette. The Time parameter
is currently not actually used.

giQ_Option
void Dialog
 iq_test (int)
 msg_list (int)
 msg_num (int)
 target (procedure)
 reaction (int)

Sets up an option-choice for a reply block if the player’s IQ statistic is
equal to or greater than a given value (iq_test), getting the string from
the message file (msg_list) and message number (msg_num), which will
cause a given reaction (reaction), and if chosen will jump to the given
(target) procedure.

give_exp_points
void
 points (int)

Adds experience points (points) to the player’s total. These points may
then be used by the player to enhance skills, etc.

Page 14

global_var
int Map
 var_index (unsigned
int)

Returns the value of a global variable # (var_index).

goto_xy
 Map

gSay_End
void Dialog
 var_index (unsigned
int)

Ends a dialog sequence, which will bring up the sequence (actually
display it).

gSay_Message
void Dialog
 msg_list (int)
 msg_num (int)
 reaction (int)

Sets up a sayMessage, which is a reply with just a [Done] option. The
msg_list determines which message file to look in, and the msg_num
determines which line to use from the file.

gSay_Option
void Dialog
 msg_list (int)
 msg_num (int)
 target (procedure)
 reaction (int)

Sets up an option-choice for a reply block, getting the string from the
message file (msg_list) and message number (msg_num), which will
cause a given reaction (reaction), and if chosen will jump to the given
(target) procedure.

gSay_Reply
void Dialog
 msg_list (int)
 msg_num (int)

Sets up a reply block (what the *CRITTER* says).

gSay_Start
void Dialog

Starts a new dialog sequence.

has_skill
int Skill
 who (ObjectPtr)
 skill (int)

Determines if a critter (who) ‘knows’ a particular skill. Actually, this
currently returns the level of the skill, which will include defaults.

has_trait
int Critter
 trait_type (int)
 who (ObjectPtr)
 trait (int)

Returns the value of a given critter object’s (who) trait of a given
Trait_type (see define.h). This can be used to determine if the player has
a particular Perk, AI Packet, team num, current rotation, or Trait
(finesse, bruiser, etc.).

how_much
int Skill
 val (int)

Returns the value of a completed skill vs. skill contest (how much the
rolls differed by). This requires that you first call one of the contest roll
commands, such as roll_vs_skill, skill_contest, etc..

inven_count
int Critter
 what (ObjectPtr)

Returns the count of how many inventory slots are filled on a given
object (what).

inven_ptr
(ObjectPtr) Critter
 what (ObjectPtr)
 slotNum (int)

Returns a pointer to the object in slot # (slotNum) in a given object
(what).

inven_unwield
void Critter

Attempts to cause a critter to unwield any wielded weapons/items. If
animations are currently disabled, it will just instantly change the art.

Page 15

is_critical
int Skill
 val (int)

Returns True if a given contest roll result is a critical result, otherwise
False.

is_loading_game
boolean Map

Returns True if the game is currently loading, False otherwise. This is
used so that bad things don’t happen on game load because a script is
doing map_enter setup stuff.

is_skill_tagged
int Skill
 skillNum (int)

Returns True if a given skill is tagged.

is_success
int Skill
 val (int)

Returns True if a given contest roll result value is a success, otherwise
False.

item_caps_adjust
int Inven
 obj (ObjectPtr)
 amount (int)

Modifies the current caps count in an object (obj) by a given amount
(amount).

item_caps_total
int Inven
 obj (ObjectPtr)

Returns the current caps total in a given object’s (obj) inventory.

jam_lock
int Object
 lockableObj
(ObjectPtr)

Jams a lock, which prevents the player from picking the lock for
approximately 24 hours. Meant to be used when a player critically fails
to pick a lock.

kill_critter
void
 obj (ObjectPtr)
 death_frame (int)

Kills a critter (obj) outright, placing it in the chosen death frame. Note:
this does NOT animate the critter, and does NOT refresh the screen! It
is meant to be used in scripts run when entering/exiting a map
(map_init/map_exit).

kill_critter_type
void Map
 pid (int)

Kills all critters of a given type (pid) outright. See kill_critter above.

language_filter_is_on
int (boolean) Meta

Returns True if the language filter is currently filtering harsh language,
False otherwise.

load_map
void Map
 map_name (string)
 start_location (int)

Loads a new map (map_name), removing all scripts currently running
and passing on the entrance location (start_location) to the new map’s
map_init script.

local_var
int Map
 var_index (unsigned
int)

Returns the value of a local variable of given index # (var_index).

map_first_run
int Map

Returns True if the current map is being run for the first time (in other
words, this map was not loaded from a save-game).

map_is_known
int Meta
 mapNum (int)

Returns True if a given map index (mapNum) is known, False
otherwise.

map_known
int Meta
 mapNum (int)

Returns True if a given map # (mapNum) is known, False otherwise.

Page 16

map_var
int Map
 var_index (unsigned
int)

Returns the value of a map-global variable of a given index #
(var_index).

message_str
char *
 list (int)
 msg_num (int)

Returns a string from the message module for a given list and a given #
(msg_num).

move_to
int Map
 obj (ObjectPtr)
 tile_num (int)
 elev (0-2)

Immediately moves an object (obj) to the given tile number and
elevation on the current map.

move_obj_inven_to_o
bj
int Inven
 srcObj (ObjectPtr)
 destObj (ObjectPtr)

Moves an object’s (srcObj) inventory into another object’s (destObj)
inventory.

obj_art_fid
(ObjectPtr) Object
 obj (ObjectPtr)

Returns the fid # (used to index art) of a given object (obj).

obj_being_used_with
(ObjectPtr) Object

Returns a pointer to the object being used on another object.

obj_can_hear_obj
boolean Map
 src_obj (ObjectPtr)
 dst_obj (ObjectPtr)

Returns True if the source object (src_obj) is capable of hearing the
destination object (dst_obj). This includes distance factors, current
activity (standing/walking/running), and skill use (stealth/etc.).

obj_can_see_obj
boolean Map
 src_obj (ObjectPtr)
 dst_obj (ObjectPtr)

Returns True if the source object (src_obj) has line-of-sight (LOS) with
the destination object (dst_obj). This also takes into account perception
& stealth rolls of the objects are critters.

obj_carrying_pid_obj
(ObjectPtr) Object
 who (ObjectPtr)
 pid (int)

Returns an Object pointer to an instance of an object of type pid if an
object (who) is carrying an object of that type.

obj_close
void Object
 what (ObjectPtr)

Attempts to close a given object (what) if it is of an openable type.

obj_drop_everything
void Inven
 who (ObjectPtr)

Causes a critter object (who) to drop all objects in it’s inventory and
drop it on the ground at it’s feet.

obj_is_carrying_obj_p
id
boolean Object
 obj (ObjectPtr)
 pid (int)

Returns the quantity of objects with matching prototype index #’s (pid)
carried in the inventory of another object (obj).

obj_is_locked
int Object
 what (ObjectPtr)

Returns True if a given object (what) is a locked object, False if it is
unlocked or not a lockable object.

Page 17

Page 18

obj_is_visible_flag
int Object
 who (ObjectPtr)

Returns True if a given object (who) is turned on (visible), False
otherwise.

obj_is_open
int Object
 what (ObjectPtr)

Returns True if a given object (what) is an open object, False if it is
closed or not an openable object.

obj_item_subtype
int Object
 obj (ObjectPtr)

Returns the subtype of an object of type 'item'. Examples would be food,
armor, weapons, etc.

obj_lock
void Object
 what (ObjectPtr)

Attempts to lock a given object (what) if it is of a lockable type.

obj_name
void Object
 what (ObjectPtr)

Returns a string representing the name of the given object (what).

obj_on_screen
int Object
 what (ObjectPtr)

Returns True if a given object (what) is currently being drawn on-
screen, False if it is not.

obj_open
void Object
 what (ObjectPtr)

Attempts to open a given object (what) if it is of an openable type.

obj_pid
int Object
 obj (ObjectPtr)

Returns the prototype id # (pid) of an object (obj).

obj_set_light_level
void Object
 obj (ObjectPtr)
 intensity (1-100)
 distance (0 - 8)

Set the light level for an object to a given intensity (percentage of
possible maximum intensity), and distance of light in hexes.

obj_type
int Object
 obj (ObjectPtr)

Returns the type of an object (obj). This would be ‘Item’, ‘Wall’,
‘Scenery’, etc.

obj_unlock
void Object
 what (ObjectPtr)

Attempts to unlock a given object (what) if it is of a lockable type.

override_map_start
void Map
 x (int)
 y (int)
 elev (0-2)
 rot (0-5)

Used when loading a new map, this forces the player (obj_dude) to start
at a particular location and rotation when first coming up.

party_add
void Party
 who (ObjectPtr)

Adds a given critter (who) into the list of party members. This will also
setup those objects so that they will not be saved in maps, and certain
other things.

party_member_obj
ObjectPtr Party
 pid (int)

Returns an ObjectPtr to a party member that matches a given pid. If that
critter isn’t currently a member of the party, then it will return NULL.

party_member_count
ObjectPtr Party
 countHidden (int)

Returns the count of the currently in-party party members.
(countHidden) determines whether or not to count the hidden members
(hangers-on).

party_remove
void Party
 who (ObjectPtr)

Removes a given critter (who) from the list of party members. This will
also change those objects so that certain object- and map-level things
will respond differently to them.

pickup_obj
void Inven
 obj (ObjectPtr)

Causes the critter self-object to animate and attempt to pick up a given
object (obj).

play_gmovie
 Meta

Plays one of the Fallout movies (full-screen, compressed, etc.).

play_sfx
 Sound

Starts a new sound effect to be played on the queue.

poison
 Critter
 who (ObjectPtr)
 amount (int)

Increases the a critters’ poison level by a given amount.

proto_data
int OR string Object
 pid (int)
 data_member (int)

Returns the value of a data-member of a given prototype (pid).

radiation_dec
 Critter
 who (ObjectPtr)
 amount (int)

Decrements a critter’s radiation counter by a given amount. NOTE: This
should only be done to the player (obj_dude) in Fallout due to design
restrictions!

radiation_inc
 Critter
 who (ObjectPtr)
 amount (int)

Increments a critter’s radiation counter by a given amount. NOTE: This
should only be done to the player (obj_dude) in Fallout due to design
restrictions!

random
int Script
 min (int)
 max (int)

Returns a random value between (min) and (max), inclusive.

reg_anim_animate
void Anim
 what (ObjectPtr)
 anim (int)
 delay (int)

Adds a single, in-place animation on an object (what) to an animation
sequence-list, at a given delay from the previous animation (delay
should always be -1)!

reg_anim_animate_fo
rever
void Anim
 what (ObjectPtr)
 anim (int)
 delay (int)

Adds a single, in-place animation on an object (what) to an animation
sequence-list, at a given delay from the previous animation (delay
should always be -1)! This animation will animate continuously until
something in the system interrupts it. To be used *very* sparingly, for
instance Gizmo’s sign and the ‘pray’ signs in the children of the
cathedral (which will have to be toned down).

reg_anim_animate_re
verse
void Anim
 what (ObjectPtr)
 anim (int)
 delay (int)

Adds a single, in-place reversed animation on an object (what) to an
animation sequence-list, at a given delay from the previous animation
(delay should always be -1)!

reg_anim_begin
void Anim

Tells the system to start an animation sequence-list.

Page 19

reg_anim_clear
void Anim
 object (ObjectPtr)

Terminates all animations that are currently registered for a given
object.

reg_anim_end
void Anim

Activates the animation sequence-list. Without this call the animation
will never occur. Note: All animation sequences must be registered at
ONCE! In other words, you cannot let the script end and finish
registering the animations later.

reg_anim_obj_move_t
o_obj
void Anim
 who (ObjectPtr)
 dest_obj (ObjectPtr)
 delay (int)

Adds an animation to cause a critter object (who) to attempt to walk to
another object (dest_obj) at a given delay from the previous animation
(delay should always be -1)!

reg_anim_obj_run_to
_obj
void Anim
 who (ObjectPtr)
 dest_obj (ObjectPtr)
 delay (int)

Adds an animation to cause a critter object (who) to attempt to run to
another object (dest_obj) at a given delay from the previous animation
(delay should always be -1)!

reg_anim_obj_move_t
o_tile
void Anim
 who (ObjectPtr)
 dest_tile (int)
 delay (int)

Adds an animation to cause a critter object (who) to attempt to walk to a
given destination tile number (dest_tile) at a given delay from the
previous animation (delay should always be -1)!

reg_anim_obj_run_to
_tile
void Anim
 who (ObjectPtr)
 dest_tile (int)
 delay (int)

Adds an animation to cause a critter object (who) to attempt to run to a
given destination tile number (dest_tile) at a given delay from the
previous animation (delay should always be -1)!

reg_anim_play_sfx
void Anim
 who (ObjectPtr)
 sfx_name (string)
 delay (int)

Adds an animation to cause an object (who) to attempt to play a given
sound effect (sfx_name) at a given delay from the previous animation!

rm_fixed_timer_event
void Meta(Time)
 who (ObjectPtr)
 fixed_val (int)

Removes (clears) all timer events hooked to a given object’s (obj) script
that have a given fixed_value (fixed_val).

rm_obj_from_inven
void Inven
 who (ObjectPtr)
 obj (ObjectPtr)

Removes an object (obj) from another object’s (who’s) inventory. Note:
this leaves the removed object in at location (0,1) on the map! You must
call move_to(…) to place it back on the map.

Page 20

rm_mult_objs_from_i
nven
int Inven
 who (ObjectPtr)
 obj (ObjectPtr)
 count (int)

Removes (count) instances of an object (obj) from another object’s
(who’s) inventory. Note: this leaves the removed object in at location
(0,1) on the map! You must call move_to(…) to place it back on the
map.
NOTE: This function returns the actual count that was removed (if you
attempted to remove more instances than existed). You *MUST* store
this value in a variable (though you don’t have to actually do anything
with it).

rm_timer_event
void Meta(Time)
 obj (ObjectPtr)

Removes (clears) all timer events hooked to a given object’s (obj)
script.

roll_dice
 Skill

Returns the value of the completed dice roll. UNIMPED!

roll_vs_skill
int (roll_result) Skill
 who (ObjectPtr)
 skill (int)
 modifier (int)

Returns the value of a completed skill roll made upon an object’s
(who’s) skill level with a given skill, and modified by a given amount
(may be zero). This value may then be passed to is_success and
is_critical to determine the appropriate states, and the how_much call
can be used to determine the difference succeeded or failed by.

rotation_to_tile
int (1…5) Map
 srcTile (int)
 destTile (int)

Returns the rotation (0…5) to face a particular tile (destTile) from a
particular tile (srcTile).

running_burning_guy
int

Returns the setting for the running-burning-guy in the game (defined in
the options screen).

scr_return
void Script

Sets the return value for a scripts C-engine node, to be used by C code.

script_action
int Script

Returns the action that has activated this script. Examples include
requests for the description of an object (description_proc), notifications
of a spatial script being activated by something hitting its boundary
(spatial_proc), or a critter being given its heartbeat (critter_proc, in other
words being told to move).

script_overrides
void Script

Tells the C-engine that the script will override default behavior for the
object. What this means is that the C-engine will not attempt to do
things that it would normally do, in expectation that the script will
handle those things itself. This is an IMPORTANT command! It is
commonly used for the general player actions upon objects, such as
looking at them (requesting a description), using them (opening doors,
for example), or using items ON them (using a picklock or a key on a
door lock).

self_obj
(ObjectPtr) Script

Returns a pointer to the object connected to this script.

set_critter_stat
int Critter
 who (ObjectPtr)
 stat (int)
 val (int)

Sets the value of a desired attribute/stat in a critter (who) to a given
value (val).

Page 21

set_exit_grids
void Map
 markElev (elevation)
 mapID (int)
 elevation (int)
 tileNum (int)
 rotation (int)

Sets all exit grids on a given elevation (markElev) to point to a
destination mapID (may be -1 which means stay on this map), elevation,
tileNum, and rotation.

set_global_var
void Map
 var_index (unsigned
int)
 value (int)

Sets the value of a global variable (var_index) to a given (value).

set_light_level
void Map
 level (int: 1-100)

Sets the ambient light level. The range is Full Darkness to Full Daylight.

set_local_var
void Map
 var_index (unsigned
int)
 value (int)

Sets the value of a local variable (var_index) to a given (value).

set_map_var
void Map
 var_index (unsigned
int)
 value (int)

Sets the value of a map-global variable (var_index) to a given (value).

set_map_start
void Map
 x (int)
 y (int)
 elev (0-2)
 rot (0-5)

Sets the start location & rotation for the next time this map is entered
(loaded & run).

set_obj_visibility
void Object
 obj (ObjectPtr)
 visibility (boolean)

Sets the OBJ_OFF flag for an object (makes it not drawn).

signal_end_game
void

Tells the system that a script is indicating the game should be ended.
This will return the player to the main-menu.

skill_contest
 Skill

Returns the value of a completed skill vs skill contest (to run through
is_success & is_critical).

source_obj
(ObjectPtr) Script

Returns a pointer to the source object (activator) for this action. The
source object for a pickup_proc (pickup an object script_action) would
be the critter picking the object up, for instance.

start_dialogue
void Dialog
 who (ObjectPtr)
 mood (int)

Start the dialogue system focusing on a critter (who) and starting in a
given (mood). This call sets up the appropriate dialog windows, head
art, etc. If this call is not made before the normal dialog calls (sayReply,
sayMessage, sayOption, etc.) then the dialog windows will not come up,
and only grey boxes will appear with the text.

Page 22

start_gialog
void Dialog
 msgFileNum (int)
 who (ObjectPtr)
 mood (int)
 headNum (int)
 backgroundIdx (int)

Start the dialogue system focusing on a critter (who) and starting in a
given (mood). This call sets up the appropriate dialog windows, head
art, etc. If this call is not made before the normal dialog calls (sayReply,
sayMessage, sayOption, etc.) then the dialog windows will not come up,
and only grey boxes will appear with the text.

target_obj
(ObjectPtr) Script

Returns a pointer to the target object for this action. The target object is
what is being acted upon.

terminate_combat
void Combat

Tells the combat system to terminate prematurely. USE WITH
CAUTION. This doesn’t prevent another (or even the SAME) script
from re-starting combat, so make sure you turn off any hostile flags, etc.

tile_contains_obj_pid
boolean Map
 tile (int)
 elev (0-2)
 pid (int)

Returns True if a particular tile contains an object with a matching
prototype index # (obj pid).

tile_contains_pid_obj
boolean Map
 tile (int)
 elev (0-2)
 pid (int)

Returns a pointer to the first object that matches a particular pid # that is
on a particular tile and elevation.

tile_distance
int Map
 tile1 (int)
 tile2 (int)

Returns the tile distance between two tile #'s.

tile_distance_objs
int Map
 obj1 (ObjectPtr)
 obj2 (ObjectPtr)

Returns the tile distance between two objects (between their tile #’s).

tile_is_visible
boolean Map
 tile (int)

Returns True if a given hex (tile) is currently visible, i.e. an object on it
could conceivably be displayed on-screen. This includes hexes that may
technically have bases that are off-screen, but on whom objects could
exist that would bound into the actual display area.

tile_num
int Map
 obj (ObjectPtr)

Returns the tile number of object (obj).

tile_num_in_direction
int Map
 start_tile (int)
 dir (0-5)
 distance (int)

Returns the tile number of a tile offset from a starting tile in a given
direction (the next tile in that direction).

town_known
int Meta
 townArea (int)

Returns True if a given town area (townArea) is known, False
otherwise.

town_map
void

Sends a request for the game engine to bring up the Town Map screen,
for the player to go to different locations in an area (different areas in
Vault13, for example).

Page 23

use_obj
(ObjectPtr) Script
 obj (ObjectPtr)

use_obj_on_obj
(ObjectPtr) Script
 item (ObjectPtr)
 targetObj (ObjectPtr)

Attempt to use an item object on a target object (targetObj). This could
be used to have a critter use a Stimpack on the player, for instance, or to
use a key on a door.

using_skill
boolean Skill
 who (ObjectPtr)
 skill (int)

Returns True if an active skill is being used, False otherwise. Examples
of active skills are Stealth and First Aid.

violence_level_setting
int (boolean) Meta

Returns the current setting of the violence level. See define.h for values.

wield_obj
void Inven
 obj (ObjectPtr)

Sets up an animation causing a critter (self_obj) to wield an object (obj)
in that critters’ inventory. This puts that object in the critter’s hand.

wield_obj_critter
void Inven
 who (ObjectPtr)
 obj (ObjectPtr)

Sets up an animation causing a critter (who) to wield an object (obj) in
that critters’ inventory. This puts that object in the critter’s hand.

wm_area_set_pos
void
 areaIdx (int)
 xPos (int)
 yPos (int)

Sets the World Map coordinates for a given area/town (areaIdx) to a
given x and y position.

world_map
void

Sends a request for the game engine to bring up the World Map screen,
for the player to move around to different locations.

world_map_x_pos
int

Returns the current X Position of the party on the World Map.

world_map_y_pos
int

Returns the current Y Position of the party on the World Map.

Page 24

Script Actions Summary

Description Object A request to examine (extended-look) an object.
Combat Critter A combat action is occurring.
Create Script This script-object is being created. (UNIMPED).
Critter Critter A critter script is getting its heartbeat.
Damage Object This object is taking damage.
Destroy Script This script-object is being destroyed.
Drop Item An object is being removed from another object’s

inventory and is being dropped on the ground.
(UNIMPED).

Look At Object A brief look at an object is being requested.
Map Enter Map This map is being entered (was just loaded).
Map Exit Map This map is being left (is being saved as a savegame).
Map Update Map This map is being updated (changing levels, lighting,

etc.)
None Script No action.
Pickup Item An attempt is being made to pickup an object and

place it in an object’s inventory. Or, could be
looting/stealing.

Spatial Script This scripts’ spatial radius has been entered.
Start Script Starting up script for first time.
Talk Critter A script dialogue is being requested.
Timed Event Script A timed event has just reached activation.
Use Object Attempt to use an object.
Use Object On Object Use an object on another object.
Use Skill On Object Use a skill on an object.

Page 25

Script Action Groups

Object:

 Object actions are generic actions that can be done on any game object. For instance, if
something requests to look at an object in the game, this would be valid on any of the normal (non-
interface) objects. Individual prototypes of objects determine whether or not that object has certain
actions available to it. So, for example, unless the prototype of the object is set to allow you to USE it,
the player will never be given the option to do so.

Item:

 Item actions are actions specific to those objects that the player can pick up, drop, and wear. In
other words, inventory items.

Critter:

 Critter actions are called on objects that represent active beings in the game. In a sense, these
actions only occur with ‘intelligent’ objects, which in nearly all cases are capable of movement and
entering combat, dialog, etc.

Map:

 Map actions are specific to special map occurrences, such as when a map is loaded, saved, or
updated. Originally map actions were only available to the map script itself, but it became clear that
they could potentially be needed for any script. They are extremely helpful for setting up variables at
the start of a map. When a map is first entered, the map script gets run first, and then every other
script which is flagged as needing to be called on enter gets called. This can be used to store map-
specific variables in the map script and to ‘export’ them from there. Then any other scripts that need
to use these variables just need to ‘import’ them, since they are guaranteed to exist.

Script:

 Script actions relate to script-specific calls, such as when a script is being destroyed, activated
by spatial movement, or previously setup timed events. These actions are not directly activated by the
player (unlike object actions), but by the script system itself.

Page 26

Script Action Descriptions

Description:
 The player is trying to examine this scripts’ object. The default behavior is to print the long
description of the object from its prototype in the small display window.

Combat:
 Combat is occurring, and one of the combat sub-actions has occurred. These actions allow the
script to react to combat (even though combat attack/etc. choices are actually handled in the engine).
They are:
 • HIT_SUCCEEDED -- The scripts’ object successfully hit it’s target. This can be used to do

extra damage (radiation, for example), or to count the attacks that succeed.
 • SEQUENCING – Combat sequencing is being checked (to see if critters want to enter/exit

combat).
 • TURN – A combat turn is just about to start. You can override the default turn behavior here

to prevent a critter from reacting to combat (or to cause them to do something special).
 • NONCOM_TURN – (UNUSED).

Create:
 (UNUSED).

Critter:
 The critter’s heartbeat is occurring. Basically, each script gets hit every so often (should be
several times a second) so that it can react to its environment or to changes in flag variables, etc. This
is where the code can be put to have the critter walk, etc. on its own.

Damage:
 Something has occurred to damage this scripts’ object. This will almost always mean that a
critter has been hit in combat. Here they could set hostile flags (that might affect dialog or quest
statuses later), or they could heal themselves to prevent death (this isn’t good practice, but may be
useful in one or two cases where you want to make sure the critter says something, does something,
etc. before they actually die).

Destroy:
 This script is being destroyed, and it and all related events (timed events, for instance) are about
to be removed from the system. This most likely means it is either a critter that has just been killed in
combat, or that it is an inventory item that was just used up. Useful things to do when this action is
called are to give the player experience points (for killing creatures or fulfilling quest objectives) and
to update counts, such as the kill-counts (number of critters of a given type killed), or local counts
(how many radscorpions are left in the cave, or how many gang members are left still in town).

Drop:
 An inventory item is being dropped from a critter’s inventory.

Look At:
 The player is trying to look at the scripts’ object. The default behavior is to print the short
description, in other words the prototype name in the small display window.

Map Enter:

Page 27

Page 28

 The map has just been entered, and this script is flagged as needing to be run before the normal
game processing starts up. Here, initialization code can setup variables for the map.

Map Exit:
 The map is about to be left. This occurs when the player goes to the town/world maps.

Map Update:
 The map is getting a ‘heartbeat’ to let it update the map. Here ambient light levels can be
changed, such as when it becomes nighttime or the player changes levels to an underground/above-
ground area.

None:
 Nothing is happening. This should never be called, but is there for the default case.

Pickup:
 This procedure means different things for different types of scripts:

Item Scripts – A critter is attempting to pickup an inventory item. For containers, however, this
means that a critter is trying to *open* it/loot it.

Critter Scripts – A critter is attempting to steal from this scripts’ critter object.

Spatial:
 An object has just moved in this scripts’ spatial sphere of detection. The script may need to
double-check that this object is of a particular type (a critter, the player’s object, etc.).

Start:
 A script is being run for the very first time.

Talk:
 A critter object is starting to talk, either because the player requested it, or because the critter’s
script requested that it occur. Here the dialog system needs to be setup, and the actual script-language
dialog system calls will be placed.

Timed Event:
 A timed-event has just gone off for this script. Usually, this event was setup earlier by this
script itself. It lets the script delay events or in effect give itself a heartbeat.

Use:
 Something (usually a critter) is attempting to use this object. The command source_obj will
return who it is. Nearly always this will mean a critter (most likely the player) is attempting to use it,
but occasionally another script will make the call, which can be used to differentiate its behavior. For
instance, this allows the vault door scripts to open the vault door when the player uses the vault door
computer, but not when the player attempts to open the door directly.

Use Object On:
 A critter is attempting to use an inventory item on this scripts’ object. This could be lockpicks
on a door, a medical kit on a critter, the iquana-on-a-stick on a dog, etc.

Use Skill On:
 A critter is attempting to use a skill on this scripts’ object. The default behavior is dependent on
the specific skill itself.

